skip to main content


Search for: All records

Creators/Authors contains: "Kantha, Lakshmi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL) program was conceived to improve understanding of the dynamics of thin strongly stratified “sheet” and deeper weakly stratified “layer” (S&L) structures in the lower troposphere under strongly stable conditions. The field portion of the IDEAL program was conducted from 24 October to 15 November 2017 at Dugway Proving Ground, Utah, to target nighttime lower troposphere S&L conditions. It employed a synergistic combination of observations by multiple simultaneous DataHawk-2 (DH2) small unmanned aircraft systems (sUASs) and concurrent ground-based profiling by the NCAR Earth Observing Laboratory Integrated Sounding System (ISS) comprising a wind profiler radar and hourly high-resolution radiosonde soundings. DH2 measurement intervals as well as vertical (∼ 2–4 km) and horizontal (∼ 5–10 km) flight trajectories were chosen based on local high-resolution weather forecasting and guided by near-real-time ISS measurements. These flights combined simultaneous vertical and slant-path profiling, and/or horizontal racetrack sampling, spanning several hours before sunrise. High-spatial- and temporal-resolution data were downlinked in real time to enable near-real-time changes in DH2 flight paths based on observed flow features. The IDEAL field program performed 70 DH2 flights on 16 d, coordinated with 93 high-resolution radiosonde soundings. In this paper, raw and derived measurements from this campaign are outlined, and preliminary analyses are briefly described. This data set, along with “quick look” figures, is available for access by other researchers, as described herein. 
    more » « less
  2. null (Ed.)
    Abstract Under stably stratified conditions, the dissipation rate ε of turbulence kinetic energy (TKE) is related to the structure function parameter for temperature , through the buoyancy frequency and the so-called mixing efficiency. A similar relationship does not exist for convective turbulence. In this paper, we propose an analytical expression relating ε and in the convective boundary layer (CBL), by taking into account the effects of nonlocal heat transport under convective conditions using the Deardorff countergradient model. Measurements using unmanned aerial vehicles (UAVs) equipped with high-frequency response sensors to measure velocity and temperature fluctuations obtained during the two field campaigns conducted at Shigaraki MU observatory in June 2016 and 2017 are used to test this relationship between ε and in the CBL. The selection of CBL cases for analysis was aided by auxiliary measurements from additional sensors (mainly radars), and these are described. Comparison with earlier results in the literature suggests that the proposed relationship works, if the countergradient term γ D in the Deardorff model, which is proportional to the ratio of the variances of potential temperature θ and vertical velocity w , is evaluated from in situ (airplane and UAV) observational data, but fails if evaluated from large-eddy simulation (LES) results. This appears to be caused by the tendency of the variance of θ in the upper part of the CBL and at the bottom of the entrainment zone to be underestimated by LES relative to in situ measurements from UAVs and aircraft. We discuss this anomaly and explore reasons for it. 
    more » « less
  3. null (Ed.)
    Turbulence parameters in the lower troposphere (up to ~4.5 km) are estimated from measurements of high-resolution and fast-response cold-wire temperature and Pitot tube velocity from sensors onboard DataHawk Unmanned Aerial Vehicles (UAVs) operated at the Shigaraki Middle and Upper atmosphere (MU) Observatory during two ShUREX (Shigaraki UAV Radar Experiment) campaigns in 2016 and 2017. The practical processing methods used for estimating turbulence kinetic energy dissipation rate ε and temperature structure function parameter C T 2 from one-dimensional wind and temperature frequency spectra are first described in detail. Both are based on the identification of inertial (−5/3) subranges in respective spectra. Using a formulation relating ε and C T 2 valid for Kolmogorov turbulence in steady state, the flux Richardson number R f and the mixing efficiency χ m are then estimated. The statistical analysis confirms the variability of R f and χ m around ~ 0.13 − 0.14 and ~ 0.16 − 0.17 , respectively, values close to the canonical values found from some earlier experimental and theoretical studies of both the atmosphere and the oceans. The relevance of the interpretation of the inertial subranges in terms of Kolmogorov turbulence is confirmed by assessing the consistency of additional parameters, the Ozmidov length scale L O , the buoyancy Reynolds number R e b , and the gradient Richardson number Ri. Finally, a case study is presented showing altitude differences between the peaks of N 2 , C T 2 and ε , suggesting turbulent stirring at the margin of a stable temperature gradient sheet. The possible contribution of this sheet and layer structure on clear air radar backscattering mechanisms is examined. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    Abstract. New comparisons between the square of the generalized potential refractive index gradient M2, estimated from the very high-frequency (VHF) Middle and Upper Atmosphere (MU) Radar, located at Shigaraki, Japan, and unmanned aerial vehicle (UAV) measurements are presented. These comparisons were performed at unprecedented temporal and range resolutions (1–4 min and  ∼  20 m, respectively) in the altitude range  ∼  1.27–4.5 km from simultaneous and nearly collocated measurements made during the ShUREX (Shigaraki UAV-Radar Experiment) 2015 campaign. Seven consecutive UAV flights made during daytime on 7 June 2015 were used for this purpose. The MU Radar was operated in range imaging mode for improving the range resolution at vertical incidence (typically a few tens of meters). The proportionality of the radar echo power to M2 is reported for the first time at such high time and range resolutions for stratified conditions for which Fresnel scatter or a reflection mechanism is expected. In more complex features obtained for a range of turbulent layers generated by shear instabilities or associated with convective cloud cells, M2 estimated from UAV data does not reproduce observed radar echo power profiles. Proposed interpretations of this discrepancy are presented. 
    more » « less
  8. Abstract

    An anelastic numerical model is used to study the influences of fine structure (FS) in the wind and stability profiles on gravity wave (GW) propagation in the Mesosphere and Lower Thermosphere (MLT). Large amplitude GWs interacting with FS, that is, thin regions of enhanced wind and stability, evolve very differently depending on the precise vorticity source and sink terms for small‐scale motions induced by the FS gradients. The resulting small‐scale dynamics are deterministic, promoting local instabilities, dissipation, and momentum deposition at locations and orientations determined by the initial FS. The resulting momentum depositions yield significant changes to the background wind structure, having scales and amplitudes comparable to the effects of large‐scale features in the ambient atmosphere. The deterministic nature of the large‐scale impacts further suggests that they can be estimated without fully resolving the underlying instability dynamics. Given the significant amplitudes and ubiquitous occurrence of FS throughout the atmosphere, the influences of these important and diverse flow evolutions merit inclusion in broader modeling efforts.

     
    more » « less